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Few-shot Class-incremental Learning: A Survey
Jinghua Zhang , Li Liu, Olli Silvén, Matti Pietikäinen, Dewen Hu

Abstract—Few-shot Class-Incremental Learning (FSCIL) presents a unique challenge in Machine Learning (ML), as it necessitates the
Incremental Learning (IL) of new classes from sparsely labeled training samples without forgetting previous knowledge. While this field has seen
recent progress, it remains an active exploration area. This paper aims to provide a comprehensive and systematic review of FSCIL. In our
in-depth examination, we delve into various facets of FSCIL, encompassing the problem definition, the discussion of the primary challenges of
unreliable empirical risk minimization and the stability-plasticity dilemma, general schemes, and relevant problems of IL and Few-shot Learning
(FSL). Besides, we offer an overview of benchmark datasets and evaluation metrics. Furthermore, we introduce the Few-shot Class- incremental
Classification (FSCIC) methods from data-based, structure-based, and optimization-based approaches and the Few-shot Class- incremental
Object Detection (FSCIOD) methods from anchor-free and anchor-based approaches. Beyond these, we present several promising research
directions within FSCIL that merit further investigation.

Index Terms—Incremental learning, continual learning, lifelong learning, class-incremental learning, catastrophic forgetting, few-shot learning,
few-shot class-incremental learning, deep learning, image classification

✦

1 INTRODUCTION

Over the last decade, Deep Neural Networks (DNNs) have
gone through several distinct developmental phases: from ar-
chitectural engineering based on supervised learning as demon-
strated by AlexNet [1] and ResNet [2], to the combined strategy
of supervised pre-training and fine-tuning, with Transformer-
based BERT [3] being a prime example. This progress further
extended to a fusion of self-supervised or semi-supervised pre-
training with prompt engineering, as demonstrated by the GPT
series [4]. These advancements have consistently expanded al-
gorithmic performance boundaries and opened up new applica-
tion possibilities. However, it’s essential to recognize that these
DNN achievements have heavily relied on a huge amount of
high-quality data, expensive computing hardware, and excellent
DNN architectures that are costly to obtain.

DNN learning paradigms are primarily designed for static
tasks within a closed-world setting, and it has inherent limi-
tations. Firstly, these models cannot retain previously acquired
knowledge and learn new knowledge over time. Specifically,
once they are trained on a particular dataset, they often require
retraining from scratch when confronted with new tasks or data
distributions. Additionally, the process of retraining involves
storing vast amounts of old data and updating models, leading
to additional computational and storage costs. Such a learning
paradigm has at least the following major issues:

• Capability and Application Limitations: These systems
are optimized for specific tasks they’ve been trained on,
making them ill-suited for dynamic situations.

• Purely Data-Driven Gap: Unlike humans, who learn effi-
ciently with few examples and exhibit lifelong adaptabil-
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ity, these systems rely heavily on vast data and lack the
versatility and retention inherent to human learning.

• Efficiency and Sustainability Issues: These data and
energy-intensive systems require frequent retraining for
new data or tasks, increasing computational resource
strain and carbon footprint.

• Privacy and Security Concerns: The dynamic world ex-
poses these systems to heightened security risks in novel
scenarios. Moreover, retaining heightens the risk of data
breaches, raising privacy alarms.

IL, also termed continual or lifelong learning, enables sys-
tems to learn new tasks over time while maintaining previous
knowledge [5, 6, 7], aiming to replicate human learning abilities
[5]. This field has seen growing interest recently, prompting nu-
merous studies and surveys [5, 7, 8, 9, 10, 11]. The development
trend in IL is summarized by the count of academic papers
from major conferences and journals, as shown in our collection
and the Awesome-Incremental-Learning resource1, and depicted in
Fig. 1. Class-incremental Learning (CIL) is notably prominent,
addressing key challenges in real-world scenarios where models
should adapt to new classes without forgetting existing ones.
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Fig. 1. IL Publications from 2016 to 2023. It is observed that CIL research
has become predominant in the field of IL over time, due to its practical value.
Concurrently, FSCIL shows a steady rise, mirroring growing requirement of
CIL with limited data.

As an important subset of CIL, FSCIL has experienced signif-
icant growth over the past four years, shown in Fig. 1. It is specif-

1. https://github.com/xialeiliu/Awesome-Incremental-Learning#2023

https://github.com/xialeiliu/Awesome-Incremental-Learning#2023


PREPARATION FOR SUBMITTING TO IEEE TPAMI 2

ically designed to address the challenges of learning new classes
with limited data. This learning paradigm demands that the
model retains previously acquired knowledge while continually
incorporating new classes, all while dealing with the constraints
of limited annotated samples for each class [12, 13, 14]. Unlike
conventional CIL, FSCIL faces more complex challenges, such
as preventing catastrophic forgetting and mitigating overfitting
due to sample scarcity. FSCIL seeks to emulate human learning
efficiency with minimal data and maintain knowledge over time,
making it highly relevant for real-world settings with limited,
evolving data. To highlight its practical importance, we provide
a concise summary of FSCIL’s practical significance:

• Adaptation to Dynamic World: FSCIL empowers models
to acquire new classes while retaining previous knowl-
edge, a critical capability for effectively adapting to a
dynamically changing world.

• High Data Efficiency: FSCIL can mitigate the necessity
for extensive sample labeling, providing advantages in
situations with limited data and high labeling costs.

• Environmental Sustainability: FSCIL promotes sustain-
ability by requiring fewer computational and storage
resources than traditional methods, a crucial benefit in
resource-limited environments.

• Data Security and Privacy: FSCIL reduces the need to
retain extensive historical data, thereby aligning with data
security and privacy requirements.

• Versatile Applications: FSCIL is applicable in various
fields, especially where data is limited, labeling is costly,
and frequent class updates are needed

Although there has been some progress in the field of FSCIL
and some representative works [5, 13, 14, 15, 16] have emerged,
it is yet in its development stage. Current methods still have a
gap to meet the practical applications. Therefore, it is imperative
to systematically review the latest developments in this field,
identify the core challenges and open questions that hinder
its development, and determine the promising future direction.
Nevertheless, most of the research on FSCIL is still quite dis-
persed, and this field needs a systematic and comprehensive sur-
vey. It has inspired our survey, which aims to fill the gap. Since
it is an ML problem proposed in the field of computer vision in
recent years and most of the research work is based on the deep
learning algorithm, the scope discussed in our paper is mainly
the deep FSCIL algorithm in the field of computer vision, which
includes primarily classification and object detection tasks.

Despite existing surveys on FSL [17, 18, 19, 20] and IL [5, 6,
7, 11, 21, 22, 23, 24, 25], there is a clear lack of systematic and
comprehensive surveys specifically on FSCIL. In this regard, we
summarize existing surveys, list their characteristics in Tab. 1,
systematically describe the uniqueness of our paper to highlight
its unique contributions. To address the shortcomings in FSCIL
research, we systematically summarize the field from various as-
pects, including definition, challenges, general schemes, related
problems, datasets, metrics, methods, performance comparisons,
and future directions. Our contributions are:

• Our survey offers a systematic and comprehensive review
of classification and object detection methods in FSCIL.

• We cover problem definition, core challenges, general
schemes, related ML problems, benchmark datasets, and
evaluation metrics in detail.

• A structured taxonomy is offered for FSCIL, discussing
classification methods from data, structure, and optimiza-
tion perspectives, and detection methods from anchor-
based and anchor-free perspectives.

• Valuable insights and outlooks in FSCIL are discussed.

The paper structure is as follows: Sec. 2 presents a detailed
overview of FSCIL, including its definition, challenges, general
frameworks, and its relationship with relevant problems. Sec. 3
discusses popular FSCIL datasets and evaluation metrics. Sec. 4
examines FSCIC methods from data, structure, and optimization
perspectives, and Sec. 5 covers FSCIOD methods from anchor-
based and anchor-free viewpoints. The paper concludes in Sec. 6
with a summary and future directions.

2 BACKGROUND

2.1 Problem Definition
The FSCIL aims to learn an ML model that can continuously
learn knowledge from a sequence of new classes with only a few
labeled training samples while preserving the knowledge gained
from previous classes [13, 14, 37, 38]. Taking the classification
task as an example, Fig. 3(a) offers an overview of the general
setting for FSCIL, including the setting of training data, the
model learning process, and the evaluation setting.

Setting: As shown in Fig. 3(a), the data stream used in
FSCIL contains a base session and a sequence of new ses-
sions. The training datasets in these sessions can be denoted
by {D0

train, D
1
train, · · · , DB

train}, where B is the number of new
sessions. The base training dataset generally contains sufficient
labeled samples from the distribution D0

t , and it can be for-
mulated by D0

train = {(xi, yi)}n0
i=1, where n0 is the number of

training samples in the base session, xi is a training sample
from class yi ∈ Y0, and Y0 is the corresponding label space of
D0

train. Differently, the training dataset in each new session is
in the form of N−way K−shot, where N−way means that the
training set contains N classes and K−shot means each class
contains K labeled samples. It can be formulated as ∀ integer
b ∈ [1, B], Db

train = {(xi, yi)}N×K
i=1 . Note that the classes in

different sessions do not intersect, i.e., ∀ integer p, q ∈ [0, B]
and p ̸= q, Yp∩Yq = ∅.

Model: During the training session b, only the dataset Db
train

is accessible, as original complete training datasets from pre-
vious sessions are unavailable. The FSCIL model must learn
new classes from Db

train while maintaining performance on old
classes, i.e., minimizing the expected risk R (f, b) on all the seen
classes [5, 16]. This process is formulated as follows:

E(xi,yi)∼D0
t∪···Db

t

[
L
(
f
(
xi;Db

train,θ
b−1

)
, yi

)]
, (1)

where the current FSCIL algorithm f aims to built the new model
based on the dataset Db

train and previous model parameters θb−1

and minimize the loss L on all seen classes [16]. Because the
datasets in FSCIL are continuously updated, the expected risk
on every new session should be optimized, i.e.,

∑B
b=1 R (f, b)

should be optimized.
Evaluation: The testing datasets in FSCIL sessions can be de-

noted by {D0
test, · · · , DB

test}, which shares the same label space
as their corresponding training datasets. For the evaluation in
session b, the FSCIL model needs to be evaluated by the joint test-
ing datasets, which encompass all the testing datasets from the
current and all preceding sessions, denoted as D0

test∪· · ·∪Db
test.

This measure helps quantify the model’s performance across all
classes it has encountered up to that point.

2.2 Core Challenges
FSCIL faces significant challenges, notably unreliable empirical
risk minimization and the stability-plasticity dilemma. In FSCIL
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TABLE 1
A summary and comparison of the primary surveys in the fields of FSL, IL, and FSCIL.

Topic Year Venue Title Main Content

FSL

2020 ACM CS Generalizing from a Few Examples: A Survey on
Few-shot Learning [17]

This paper provides a clear introduction of FSL, including definition, challenges, and
main methods from data, model, and algorithm perspectives. However, it lacks a
summary of datasets and performance.

2020 arXiv Learning from Very Few Samples: A Survey [18]
This paper categorizes FSL approaches into generative and discriminative models. It
also discusses emerging FSL topics and its various applications. However, it lacks a
summary of challenges and relevant problems.

2022 ACM SC Few-Shot Object Detection: A Survey [19]
This paper focuses on few-shot object detection. It reviews related methods based on
data augmentation, transfer learning, metric learning, and meta-learning. However, it
lacks a summary of challenges and relevant problems.

2022 TPAMI A Survey of Self-Supervised and Few-Shot
Object Detection [20]

This paper reviews few-shot object detection methods in self-supervised and few-shot
object detection, highlighting the potential of technique fusion. However, it lacks a
summary of challenges and relevant problems.

IL

2019 Neural
Networks

Continual Lifelong Learning with Neural
Networks: A Review [6]

This paper discusses the challenges and approaches in lifelong learning, which involves
continuous knowledge acquisition and application, and emphasizes the need to address
catastrophic forgetting. But it lacks a summary of relevant problems and performance.

2020 Information
Fusion

Continual Learning for Robotics: Definition,
Framework, Learning Strategies, Opportunities
and Challenges [21]

This paper reviews continual learning, highlights the need for stable real-world
algorithms, summarizes existing benchmarks and metrics, and proposes a framework
for evaluating approaches across both robotics and non-robotics fields. But it lacks a
summary of performance.

2021 Neural
Networks

A Comprehensive Study of Class Incremental
Learning Algorithms for Visual Tasks [22]

This paper focuses on class incremental learning, providing the taxonomy of regular-
ization approaches, dynamic architectures, and complementary learning systems and
memory replay. However, it lacks a summary of challenges and relevant problems.

2022 TPAMI A Continual Learning Survey: Defying Forgetting
in Classification Tasks [5]

This paper summarizes task incremental learning and compares 11 advanced methods.
It also analyzes the impact of model parameters, task order, and resource requirements.
However, it lacks a summary of challenges and relevant problems.

2022 TPAMI Class-Incremental Learning: Survey and Perfor-
mance Evaluation on Image Classification [7]

This paper surveys CIL methods for image classification. It provides experimental eval-
uations on 13 methods and explores various scenarios. However, it lacks a summary of
relevant problems.

2022 Neuro-
Computing

Online Continual Learning in Image Classifica-
tion: An Empirical Survey [23]

This study reviews online continual learning in image classification and compare
advanced methods. However, it lacks a summary of challenges and relevant problems.

2023 arXiv A Comprehensive Survey of Continual Learning:
Theory, Method and Application [25]

This survey explores continual learning from theoretical foundations, methods, and
applications, but it lacks a summary of relevant problems, datasets, and performance.

2023 arXiv Deep Class-Incremental Learning: A Survey [24]
The paper categories methods into data-centric, model-centric, and algorithm-centric,
providing the evaluation of 16 methods. The paper also argues for a fair comparison to
avoid bias. But it lacks a summary of challenges and relevant problems.

FSCIL 2023 Neural
Networks

A Survey on Few-Shot Class-Incremental
Learning [26]

This survey focuses on FSCIL. However, the taxonomy and summary of relevant
problems are not systematic. It also lacks a summary of challenges. Discussion about
object detection and the future direction is not in-depth.

2023 Ours Few-shot Class-incremental Learning: A Survey

Our paper focuses on FSCIL in classification and object detection tasks, clarifies
the challenge and relationship with relevant problems, provides a systemical
taxonomy from data-based, structure-based, and optimization-based approaches.
We also summarize the performance of existing methods and point out potential
directions.

sessions, limited supervised data mean empirical risk fails to
accurately represent expected risk, decreasing model generaliza-
tion and increasing overfitting risks. Moreover, as new classes
are continually added, old knowledge can be easily forgotten
and overwritten by new knowledge. This leads to catastrophic
forgetting. Otherwise, intransigence may occur. Therefore, bal-
ancing model stability and plasticity is another core challenge.
This section provides the details of these challenges.

2.2.1 Unreliable Empirical Risk Minimization

In FSCIL, unreliable empirical risk minimization, where the
model is trained to minimize prediction errors on the training
data, poses a major challenge. This approach doesn’t ensure
strong generalization on test data, especially with limited train-
ing samples. In FSCIL, each session’s training dataset follows an
N−way K−shot format, often leading to a significant discrep-
ancy between empirical and expected risks due to inadequate
samples for new classes. This gap can result in overfitting, where
the model excels on training data but underperforms on testing
data, compromising its generalization ability [17, 39].

In contrast to conventional FSL, FSCIL not only grapples
with the issue of scarce samples but is also confronted with the
challenge posed by the continual increase in classes. Continuous
unreliable empirical risk minimization in successive sessions
may hinder the model’s convergence to an ideal state, question-
ing not only the reliability of the model formed in the current in-
cremental session but also presenting a challenge in maintaining
model stability in the subsequent incremental session. This issue

becomes particularly pronounced when dealing with multiple
incremental classes with limited training samples [30].

To elaborate on this challenge, we introduce essential con-
cepts of empirical risk minimization [17, 40, 41]. For a learning
task with dataset D = {Dtrain, Dtest}, where p(x, y) denotes
the joint probability distribution of data x and label y, and fo
is the optimal hypothesis from x to y, i.e., the function that
minimizes the expected risk. Specifically, given a hypothesis f ,
the expected risk R (f), which measures the loss concerning
p(x, y), is formulated as:

R (f) =

∫
L (f (x) , y) dp (x, y) = E [L (f (x) , y)] , (2)

and fo can be explained as:

fo = argmin
f

R (f) . (3)

As p(x, y) is unknown, the empirical risk, which is the average
loss value obtained on the training dataset Dtrain of I samples, is
generally used as a proxy of R(f) for minimization. Specifically,
empirical risk can be formulated as:

RI (f) =
1

I

I∑
i=1

L (f (x) , y) . (4)

Since Dtrain is deterministic, a hypothesis space F of hypotheses
f(θ) is chosen to optimize the model. The minimization of RI(f)
can be denoted as:

fe = argmin
f∈F

RI (f) . (5)
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TOPIC (Tao et al.)
Proposed FSCIL problem, 
setup, evaluation datasets for 
the first time 

LCwoF (Kukleva et al.)
The first raw data reply 
method in FSCIL

F2M (Shi et al.)
Optimized the model within 
flat local minima to prevent 
forgetting for the first time

FSLL+SS (Mazumder et al.)
Introduced self-supervised 
features to FSCIL for the first 
time 

MgSvF (Zhao et al.)
Analyzed different frequency 
components to balance old 
and new knowledge learning 
for the first time

DSN (Yang et al.)
Desgined a novel dynamic 
structure besides graph for 
FSCIL

CLOM (Zou et al.)
Proposed the class-level 
overfitting problem

LIMIT (Zhou et al.)
Representative meta-learning 
FSCIL method

ERDFR ( Liu et al.)
The first data-free reply 
method considering privacy 
protection in FSCIL

CEC (Zhang et al.)
Proposed a graph-based 
method with its code widely 
used as the base for following 
studies

SaKD (Cheraghian et al.)
Introduced semantic word 
vector to assist FSCIL visual 
task for the first time 

C-FSCIL (Hersche et al.)
Optimized class prototypes 
towards the pre-defined 
classifier for the first time

FACT (Zhou et al.)
Introduced the forward 
compatibility into FSCIL for 
the first time

2020

2021

2022

CVPR

CVPR

ICCV

NIPS

AAAI

TPAMI

CVPR

TPAMI

ECCV

TPAMI

NIPS

Fig. 2. A chronological overview of some representative FSCIL methods. FSCIL was first carried out by TOPIC [13]. CEC [14] was widely used as a base
for subsequent studies. SaKD [27] integrated semantic word vectors into FSCIL, offering a reference for applying language-image models in the future.
LCwoF [28] and ERDFR [29] proposed distinct data replay strategies. F2M [30] introduced a novel approach by constraining optimization within flat local
minima. FSLL+SS [31] introduced the semi-supervised features to FSCIL for the first time. MgSvF [32] analyzed and utilized different frequency components
to balance the old and new knowledge. FACT [33] introduced a fresh perspective by advocating forward compatibility in FSCIL. C-FSCIL [34] pre-defined
classifiers to guide model optimization. DSN [35] offered a novel dynamic structure for FSCIL. LIMIT [16] proposed a representative meta-learning paradigm
for FSCIL. CLOM [36] pointed out the issue of class-level overfitting made by metric learning in FSCIL.
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(a) Few-shot Class-incremental Learning (b) Class-incremental Learning (c) Task-incremental Learning (d) Domain-incremental Learning 

(e) Summary of the difference between different incremental learning fields

Fig. 3. The general settings of different IL tasks. Specifically, (a) shows the setting of FSCIL, (b) is the CIL, (c) represents the setting of Task-incremental
Learning (TIL), and (d) illustrates the Domain-incremental Learning (DIL). FSCIL can be viewed as a subdomain of CIL, where the base session usually has
sufficient training data, and the incremental sessions are formed in the N−way K−shot format. TIL differs from CIL because the session identity is known
during model training and testing. In contrast, DIL maintains the same classification tasks, but the data across different sessions comes from different domains.
Note that “session” may also be called “task” in other literature.

Ideally, fe approximates fo as closely as possible. However,
since fo is unknown, it requires some f ∈ F to approximate
it. Assume fb is the best approximation for fo in F , which can
be formulated as:

fb = argmin
f∈F

R (f) . (6)

Eclectically, we hope fe can approximate fb as closely as possible.
For simplicity, we assume that fo, fe, and fb are well-defined and
unique. The total error can be decomposed as:

E [R (fe)−R (fo)] = E [R (fb)−R (fo)]︸ ︷︷ ︸
Eapp

+E [R (fe)−R (fb)]︸ ︷︷ ︸
Eest

,

(7)

Here, the expectation concerns the random choice of Dtrain. The
approximation error Eapp measures how closely functions in F
can approximate the optimal hypothesis fo, and the estimation
error Eest measures the effect of minimizing the empirical risk
RI(f) instead of the expected risk R(f) in F . Overall, the
hypothesis space F and the number of examples in Dtrain affect
the total error [17].

As illustrated in Fig. 4(a), when the supervised information
in Dtrain is sufficient, i.e., I in Dtrain is large enough, the
empirical risk minimization function in F can approximate the
best-expected risk minimization function in F well, i.e., fe can
provide a good approximation to fb. However, due to the limited
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number of training samples in each FSCIL incremental session,
the best empirical risk minimization function is often a poor
approximation to the best-expected risk minimization function
in F , i.e., fe is far from fb in F , as shown in Fig. 4(b). This
discrepancy leads to unreliable empirical risk minimization in
the model learning process.

(a) Learning with sufficient samples (b) Learning with few samples

��

��

��

��

�
��

��

��

��

�

Fig. 4. The illustration of unreliable empirical risk minimization in FSCIL.
(a) with sufficient training samples, the empirical risk minimization can ap-
proximate the best-expected risk minimization function. (b) when the training
samples are insufficient, the best empirical risk minimization function is often
a poor approximation to the best-expected risk minimization function.

2.2.2 Stability-plasticity Dilemma
In FSCIL, a central challenge is the stability-plasticity dilemma,
which involves balancing the model’s consistent performance on
learned classes (stability) and its adaptability to new classes with
limited samples (plasticity). Traditional deep learning models are
typically static and can only handle previously learned classes.
FSCIL demands continual learning of new classes with only a
few available labeled training samples and without access to
the original complete training data of old classes. It requires the
model to maintain the stability of previously learned knowledge
and plasticity in learning new knowledge. However, because
the optimization objectives for old and new classes are different
and conventional deep learning algorithms indiscriminately op-
timize the existing model parameters when learning new classes,
the decision boundary usually shifts towards the new classes.
Therefore, the decision boundary may show poor performance
or even complete failure in previous classes. The phenomenon
is known as catastrophic forgetting. Similarly, an excessive focus
on maintaining the stability of the model’s old knowledge may
limit its ability to learn new tasks, known as intransigence.
Thus, achieving an equilibrium between stability and plasticity
is pivotal in FSCIL.

The stability-plasticity dilemma can be illustrated through
consecutive sessions p and q. Fig. 5(a) and Fig. 5(b) depict error
surfaces for these sessions, with darker areas representing ideal
loss values, and the model under consideration has only two
parameters, θ1 and θ2. It can be observed that the optimization
objective of session p is to move downwards, while that of
session q is to approach the band center. Suppose the initial
model on session p is θ0, and the optimized is θp, which shows
promising performance on session p. However, when the model
starts learning the next session q, θp obtained from session p is
insufficient to meet the requirement of session q. To solve the
problem, the model usually adjusts the parameters to minimize
the loss towards the center of the loss surface. Assuming the
optimized model for session q is θq , it can be observed that
θq can adapt well to the analysis tasks on session q. However,
when we use θq to make predictions on session p, the decision
boundary cannot achieve satisfactory performance, indicating
the occurrence of forgetting. Nevertheless, if we constrain θp to
move towards θ⋆ while learning session q, we can observe that
the model can adapt to both session p and session q effectively.

(a) Learning in session p

�1

�2

��

��

��

(b) Learning in session �

�1

�2

��

��

�∗

Fig. 5. The illustration of stability-plasticity dilemma in FSCIL. (a) and (b)
are two consecutive sessions. Darker areas indicate optimal loss values. θp

performs well in session p but poorly in q. Optimizing θp to θq on session q
diminishes its performance on session p. Yet, directing optimization towards
θ⋆ ensures good results on both sessions.

To balance model stability and plasticity in a new session, the
key approach is distinguishing between critical and non-critical
parameters from the previous session, optimizing only the non-
critical ones. The loss function for the new session encompasses
both the classification task and prevention of catastrophic forget-
ting. It is formulated as follows:

L′ (θ) = L (θ) + λ
∑
i

bi
(
θi − θbi

)2
, (8)

where L is the partial loss function for the current classifica-
tion task, θi denotes the parameter in the current model θ, θbi
represents the corresponding parameter in the previous model
θb, bi characterizes the importance of θbi for the previous task,
and the hyperparameter λ balances the two parts of the overall
loss. Setting bi = 0 imposes no constraint on θi, leading to
catastrophic forgetting. Conversely, setting bi = ∞ results in
intransigence, where θi always equals θbi .

2.3 General Schemes

FSCIL has two main frameworks, which are presented in Fig. 6.
The first one comprises a feature extractor and a softmax clas-
sifier, while the second involves a feature embedding network
and the nearest class mean classifier [32, 42, 43]. The entire
network is trainable throughout the IL process in the first one.
To counteract catastrophic forgetting, some studies [44, 45, 46]
employ KD techniques to train models, thereby enabling them to
maintain competent classification capabilities on previous classes
while accommodating new ones. The second framework focuses
on training a feature embedding network, which maps samples
into a feature space where the distances between them represent
semantic differences. This is followed by classification using the
nearest class mean classifier. For instance, some studies [47]
employ metric loss for the training of the embedding network,
enabling it to learn more discriminative features and better adapt
to incremental classes.

2.4 Relevant Problems

2.4.1 Incremental Learning
This section reviews the relationship and distinctions between
FSCIL and other IL scenarios, specifically CIL, TIL, and DIL, as
outlined by Van de Ven et al. [11]. Notably, the term ”session” in
FSCIL is adopted here instead of the ”task” terminology used in
other IL literature.

Class-incremental Learning: CIL aims to learn an algorithm
that can continuously recognize new classes without forgetting
old ones [5, 11, 24]. As FSCIL can be seen as a subdomain of CIL,
it can be observed from Fig. 3(a) and Fig. 3(b) that their general
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Fig. 6. The general schemes of FSCIL. (a) “Feature Extractor + Softmax
Classifier” has a trainable backbone with KD-based methods being the most
typical method. (b) is “Feature Embedding + Nearest Mean Classifier” with
a fixed backbone after base training. The most typical approach is feature
embedding methods with cosine similarity classifier.

settings are very similar. Both require learning new class data
as it arrives and maintaining classification abilities on previous
classes. However, FSCIL’s base session often includes many
training samples, while CIL does not have strict restrictions.
Additionally, the training samples in the incremental session of
FSCIL are limited and exist in the form of N−way K−shot.
In contrast, the training samples in the incremental session of
CIL are usually sufficient. The core challenge of CIL lies in
solving the stability-plasticity dilemma. At the same time, FSCIL
needs to solve this challenge and address the problem caused by
unreliable empirical risk minimization due to the lack of training
samples and its sustained impact in continuous scenarios.

Task-incremental Learning: TIL aims to learn an algorithm
that can progressively learn new tasks without forgetting old
ones. As depicted in Fig.3(c), TIL’s training data in classification
scenarios is split into multiple sessions, each representing a
distinct task. During both training and testing, the TIL model is
always aware of the specific task identity. To avert catastrophic
forgetting, various algorithms[11, 48, 49] employ task-specific
components or design separate networks for each task. TIL’s
primary challenge lies in identifying shared features across tasks
to balance performance and computational complexity, using
knowledge from one task to enhance performance in others [11].

Domain-incremental Learning: DIL is an ML problem de-
signed to continuously adapt to data distribution from differ-
ent domains while the structure of the problem is always the
same [11]. DIL addresses the variation in data distribution across
incremental domains, enabling effective learning and prediction
in new domains without forgetting previously acquired knowl-
edge. As depicted in Figure 3(d), DIL involves training data
from multiple sessions, each containing identical classes but
with distinct data distributions indicative of different domains.
The DIL model must continuously adapt to these new domains
without losing prior knowledge. Its primary challenge is to
identify and leverage shared features across domains, allowing
quick adaptation to new domains and learning new knowledge
while preserving existing knowledge in old domains.

2.4.2 Few-shot Learning

FSL refers to using very few training samples for model learn-
ing [50]. To better understand the correlations and distinctions
between FSCIL and FSL, this section presents pertinent concepts,
including FSL and general Few-shot Learning (gFSL). For clarity,

Tab. 2 is provided, summarizing the distinct attributes of FSL,
gFSL, and FSCIL.

TABLE 2
The difference between FSL, gFSL, and FSCIL. Note that the base classes

indicate the original complete version of base training data.

Settings Training Data Testing DataInitial Phrase Sequent Phrase
FSL Base Classes New Classes New Classes

gFSL Base Classes Base + New Classes Base + New Classes
FSCIL Base Classes New Classes Base + New Classes

Few-shot Learning: FSL is an ML problem that aims to learn
a model capable of classifying and recognizing new classes with
very limited training samples [17, 51, 52]. Similar to FSL, FSCIL
also employs N−way K−shot learning for each new class.
However, FSCIL’s training data comprises multiple incremental
sessions, each with several few-shot classes. As Tab. 2 indicates,
FSL’s main goal is to enable model generalization to new classes
using limited training data, without emphasizing base class
recognition performance. In contrast, FSCIL aims to continu-
ously learn new classes with limited samples while preserving
knowledge of previously learned classes.

General Few-shot Learning: FSL typically doesn’t consider
base class performance in testing [53]. However, real-world ap-
plications often require models to learn new classes from limited
samples while maintaining performance on base classes, which
often represent high-frequency classes in the real world [13, 54].
This practical need has led to the development of a novel
setting, gFSL [15], aimed at enabling learning of new classes
with limited samples without compromising performance on
previous classes [15, 55, 56]. As highlighted in Tab. 2, unlike
FSCIL, gFSL allows access to initial training data of base classes.

2.5 Taxonomy
For a thorough examination of FSCIL research, we propose a
taxonomy for current methods. Illustrated in Fig. 7, we analyze
existing methods from three angles: data-based, structure-based,
and optimization-based approaches for the FSCIC problem. Ad-
ditionally, for the FSCIOD issue, we assess methods through
anchor-based and anchor-free perspectives.

3 DATASETS AND EVALUATION

This section focuses on the role of datasets in FSCIL, crucial
for benchmarking and comparing algorithms. It begins with a
review of the primary public datasets for FSCIL, detailing their
characteristics, statistics, and implementation specifics. Subse-
quently, it introduces evaluation metrics for various tasks, and
concludes with an overview of limitations and future trends.

3.1 Datasets
3.1.1 Datasets for Classification
miniImageNet: miniImageNet, a diverse and challenging dataset
containing object classes from various fields such as animals,
plants, daily necessities, and vehicles, was originally proposed
by Vinyals et al. [57] in 2016 and has been commonly used to
evaluate FSL algorithms. The dataset comprises 60,000 images
selected from ImageNet [58], with 100 classes and 600 images per
class, each sized at 84 × 84 pixels. In FSCIL, the prevalent data
partitioning method by Tao et al. [13] divides these 100 classes
into 60 base and 40 incremental classes. These incremental
classes are further segmented into 8 sessions, each with 5 classes
and 5 training samples per class, forming a 5−way 5−shot setup.
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Fig. 7. The taxonomy of representative methods in FSCIL.

CIFAR-100: CIFAR-100, introduced by Krizhevsky et al. [59] in
2009, is widely used in CIL. It features a broad array of image
data, covering classes such as plants, humans, and vehicles.
The dataset comprises 100 classes, each with 600 32 × 32 RGB
images, allocated into 500 for training and 100 for testing. For
FSCIL, the common data partitioning approach by Tao et al. [13]
divides these 100 classes into 60 base classes and 40 incremental
classes. These incremental classes are further split into 8 sessions,
each with 5 classes. Every class in these sessions has 5 training
samples, establishing a 5−way 5−shot format.

CUB-200: The Caltech-UCSD Birds-200-2011 (CUB-200)
dataset, created by Wah et al. [60] in 2011, is a benchmark dataset
for fine-grained classification in computer vision. It comprises
11,788 images across 200 bird species. For FSCIL algorithm
evaluation, the data partitioning method by Tao et al. [13] is
commonly employed. This method splits the 200 classes into 100
base and 100 incremental classes, with these incremental classes
further divided into 10 sessions. Each session encompasses 10
classes, with 10 training samples per class, resulting in each
session being a 10−way 10−shot task. The standard image size
in this context is 224× 224 pixels.

3.1.2 Datasets for Object Detection
COCO: The Microsoft Common Objects in Context (COCO)
dataset, widely used for object detection tasks, comprises 80
object classes including people, animals, vehicles, furniture, and
food [61]. It features a diverse and complex array of images that
reflect real-world scenarios, complete with detailed annotations
such as bounding boxes, class labels, and semantic segmentation
masks. For FSCIOD tasks, the data partitioning strategy by Perez-
Rua et al. [62] is commonly used. This approach utilizes 20
classes overlapping with the PASCAL VOC dataset [63] as new
incremental classes and the remaining 60 as base data. FSCIOD
models under this setup are evaluated using K ∈ 1, 5, 10
bounding boxes per new class.

PASCAL VOC: The PASCAL Visual Object Classes (VOC)
dataset, widely used for object detection tasks, includes 20 com-
mon object classes like people, animals, vehicles, and household

items [63]. It is frequently utilized for cross-dataset evaluations of
FSCIOD algorithms. Notably, the VOC shares 20 classes with the
COCO dataset. Thus, the 60 non-overlapping classes in COCO
are typically the base training data for cross-dataset evaluations,
with the VOC’s 20 classes serving as new incremental classes to
assess few-shot IL capabilities. The evaluation strategy, proposed
by Perez-Rua et al. [62], is similar to that used with the COCO
dataset, where FSCIOD models are evaluated using K ∈ 1, 5, 10
bounding boxes annotated for each new class.

3.2 Evaluation Metrics

3.2.1 Evaluation Metrics for Classification

In FSCIL, the model must learn new classes while retaining
knowledge of previous ones. After each incremental session, it
undergoes testing on a joint dataset encompassing all classes
encountered thus far, with classification accuracy as the standard
evaluation metric. The model is required to balance maintaining
old class recognition with learning new ones. Moreover, post-
completion of all incremental sessions, the model’s overall per-
formance is assessed using various metrics. Common metrics
include Performance Dropping (PD) rate and Average Accuracy
(AA). PD rate measures the accuracy difference between the final
incremental and base sessions, where lower values denote better
FSCIL performance. AA calculates the mean accuracy across the
base and all incremental sessions, with higher values indicating
superior FSCIL performance.

3.2.2 Evaluation Metrics for Object Detection

In FSCIOD tasks, two approaches incorporate new incremental
data: batch and continuous IL. Batch IL entails learning all
new classes at once, while continuous IL adds new classes
progressively. The more common setting is batch IL, akin to a
single-session FSCIL. The predominant performance metric here
is Average Precision (AP), which assesses the detection model’s
effectiveness. AP is calculated separately for base classes, new
classes, and all classes, with higher AP values across all classes
indicating better FSCIOD performance. Additionally, some stud-
ies use Average Recall (AR) and AP50 as complementary metrics
for a more comprehensive evaluation.

3.3 Summary

The overview of datasets and evaluation methods reveals a
scarcity of publicly available datasets for FSCIL tasks, limiting
their practical application. Some studies, such as [64], have in-
troduced datasets for various FSCIL scenarios, but there remains
significant scope for dataset enhancement. Regarding model
evaluation, while current metrics assess the model’s learning
ability to some extent, they don’t completely capture the detailed
performance of FSCIL throughout the continuous learning pro-
cess [47]. Hence, both datasets and evaluation metrics in FSCIL
present substantial opportunities for further development.

4 FEW-SHOT CLASS-INCREMENTAL CLASSIFICATION

This section, focusing on FSCIL classification tasks, summarizes
existing methods classified into data-based, structure-based, and
optimization-based categories, noting some overlap across these
domains. The methods are categorized based on their attributes
and core innovations, concluding with a performance compari-
son and key concerns discussion.
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(d) Pseudo Session-based Method: CEC (Zhang et al.)
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(a) Raw Replay-based Method: LCwoF (Kukleva et al.)

(b) Generative Replay-based Method: ERDFR (Liu et al.)

(c) Pseudo Class-based Method: FACT (Zhou et al.)

(e) Dynamic Structure-based Method: DSN (Yang et al.)

Fig. 8. The representative classification methods in FSCIL: (a) LCwoF, storing
raw samples for replay to calibrate performance; (b) ERDFR, which syn-
thesizes old samples for replay via Generative Adversarial Network (GAN)
model; (c) FACT, ensuring model forward compatibility by creating virtual
classes during base training; (d) CEC, transferring contex between new and
old prototypes using a GAT; and (e) DSN, facilitating FSCIL with a dynamic
structure that allows for expansion and autonomous compression.

4.1 Data-based Approaches

Data-based approaches refer to addressing FSCIL challenges
arising from limited or non-reusable data by focusing on the
data perspective. Relevant methodologies include data replay
and pseudo-data construction.

4.1.1 Data Replay-based Methods
Catastrophic forgetting often occurs in FSCIL due to the unavail-
ability of original complete training data from previous sessions.
Data replay is a direct strategy to mitigate this issue by replaying
valuable data while adapting to new sessions. Existing methods
include raw replay and generative replay, involving the replay
of samples or feature representations.

Raw Replay-based Methods: The raw replay methods ad-
dress catastrophic forgetting by storing a portion of raw samples
from previous sessions in auxiliary memory and replaying it
during the learning process of a new session to review previous
knowledge. As shown in Fig. 8(a), Kukleva et al. [28] proposed a
multi-stage FSCIL method called LCwoF. It first used the Cross-
entropy (CE) loss to train the backbone. In the second stage, it
employed the KD loss and base-normalized CE loss to jointly
supervise learning new classes and preserve the old knowledge.
In the final stage, randomly sampled old and new class data
were combined for data replay to further calibrate the perfor-
mance. Differently, Zhu et al. [44] proposed a feature distribution
distillation-based method, which stored the same number of old
samples as each new class to form a joint set during its learning
process. Both the old and new models generated the feature
representations for this set. A joint function based on CE loss and
KD loss was employed to constrain the new model to generate
similar representations as the old model to preserve the old
knowledge. However, the performance of raw replay methods
is influenced by factors such as auxiliary storage space, sample
selection, and quantity, which have not been fully addressed.

Generative Replay-based Methods: The generative replay
methods train and store a model that generates data, including
samples or feature representations of old classes during the new
session learning process to review old knowledge. As shown in
Fig. 8(b), Liu et al. [29] proposed a data-free replay method that
used GAN-like ideas to train a generator with an uncertainty
constraint based on entropy regularization so that the generated
data could get close to the decision boundary. In incremental
sessions, the generated and new data fine-tuned the model,
giving it a good performance on new and old classes. Different
from generating samples, some methods choose to generate
features. Specifically, Shankarampeta and Yamauchi [65] proposed
a framework based on Wasserstein GAN [66] with MAML [67],
which mainly consisted of a feature extractor and a feature
generator. During the training process, the feature extractor was
initialized on base data, and then the feature generator was
trained by meta-learning with MAML. In IL, the feature extractor
with feature distillation was combined with feature replay at
the classifier level to tackle catastrophic forgetting. Similarly,
FSIL-GAN proposed by Agarwal et al. [68] used a similar frame-
work to perform feature replay. The main contribution of FSIL-
GAN was the import of the semantic projection module, which
constrained the synthesized features to match with the latent
semantic vectors to ensure their diversity and discriminability.
In IL, KD ensured knowledge transfer between the old and
new generators. Generative replay offers flexibility and safety
in sample generation but increases the model complexity.

Discussion: Data replay is a direct strategy to address catas-
trophic forgetting in FSCIL. While raw replay methods provide



PREPARATION FOR SUBMITTING TO IEEE TPAMI 9

simplicity and convenience, their effectiveness is influenced
by factors including auxiliary storage space, the selection and
quantity of samples, and the imbalanced distribution of old
and new classes. In comparison, generative replay methods
exhibit better flexibility and mitigate potential privacy concerns
associated with raw replay methods. However, generative replay
methods face challenges in continuously generating old samples
in the imbalanced and dynamic data stream, generation quality
and efficiency, and additional computational costs. These issues
require further exploration and research.

4.1.2 Pseudo Scenarios-based Methods

Contrasting backward-compatible methods such as data replay
that tackle catastrophic forgetting, another prevalent FSCIL strat-
egy is the construction of pseudo-incremental scenarios. These
scenarios, acting as rehearsal mechanisms in the dynamic and
ever-expanding FSCIL data stream, prepare models for actual in-
cremental sessions, ensuring effective performance. These meth-
ods primarily fall into two categories: pseudo-class and pseudo-
session construction.

Pseudo Class-based Methods: Pseudo-class construction
methods aim to generate synthetic classes and their correspond-
ing samples to facilitate FSCIL models preparing for the real
incremental classes. Most current studies employ base sessions to
develop these pseudo-classes, training the models using pseudo-
data and the original data. This strategy promotes forward
compatibility in the FSCIL models. As shown in Fig. 8(c), this
approach is the forward-compatible FSCIL framework proposed
by Zhou et al. [33]. The crux of this framework lies in constraining
the real samples during training, enabling them to render their
respective categories more compact in the embedding space and
reserve some spaces for the constructed virtual categories. In
particular, this method promotes the intra-class compactness
of the real data and forces the masked features based on the
real data to be closed to a pseudo-class. Simultaneously, the
framework employs similar techniques to constrain virtual fea-
tures constructed from a mixture of multiple class features. It
ensures the compactness of real categories while reserving some
feature space for incremental classes. Similarly, Peng et al. [47]
generated pseudo-classes by merging two distinct classes from
the base session and augmenting the data using techniques such
as random cropping, horizontal flipping, and color jittering in
the ALICE framework. It used angular penalty loss commonly
used in face recognition for feature extractor training based on
the joint set of pseudo and real data. The core idea also involved
promoting intra-class compactness and reserving feature space
for incremental classes.

Pseudo Session-based Methods: Unlike pseudo-class meth-
ods that create synthetic classes, pseudo-session construction
methods focus more on emulating incremental sessions. Most ex-
isting approaches use base sessions to create pseudo-incremental
sessions and meta-learning techniques to allow FSCIL models
to understand how to handle incremental sessions. The ways
to construct pseudo-incremental sessions are various. As shown
in Fig. 8(d), the CEC framework proposed by Zhang et al. [14]
applied the large angle rotation transformation on the base
classes to build pseudo-incremental sessions. These pseudo-
sessions were then combined with the base session to train the
graph attention network by meta-learning strategy so that it
could pass context information between prototypes, thus better
equipping it to handle the FSCIL task. The FSCIL model by Zhu
et al. [69] included two innovations: Random Episode Selection
(RES) and Dynamic Relation Projection (DRP). RES sampled five

classes randomly to create N−way K−shot pseudo-incremental
sessions, masking original class prototypes and using pseudo-
incremental data to generate class prototypes by averaging.
These prototypes were refined using DRP, which mapped class
prototypes from standard and pseudo-IL to shared latent space.
It calculated the cosine similarity between old and new classes
to obtain a relation matrix. This matrix acted as a transitional
coefficient for prototype optimization, enabling dynamic opti-
mization to preserve existing knowledge and boost new classes’
discriminative ability.

Discussion: Pseudo-scenario construction is a forward-
compatible strategy, synthesizing classes or sessions to train
models for future real incremental classes. Pseudo-class con-
struction is a method where pseudo-classes are constructed
in conjunction with base classes to train the model, enabling
the feature space to reserve certain spaces for upcoming incre-
mental classes. However, reserving space often requires prior
knowledge of the total number of incremental classes, which
contradicts the real world. Since synthetic and real data often
exhibit differences, the suitability of reserved space remains to
be discovered. In contrast, pseudo-session construction is more
reasonable, as it often combines the pseudo-incremental sessions
with meta-learning to train the model that can learn to adapt
to incremental sessions. However, the issue of whether pseudo-
incremental sessions can effectively simulate real incremental
sessions needs further exploration.

4.2 Structure-based Approaches
Structure-based approaches refer to utilizing the model de-
sign or its characteristics to address the challenges in FSCIL.
These methods mainly involve dynamic structure methods and
attention-based methods.

4.2.1 Dynamic Structure-based Methods
Dynamic structure methods aim to achieve FSCIL by dynam-
ically adjusting the model structure or the interrelationships
between prototypes. Currently, existing methods can be broadly
categorized into graph-based and other methods.

Graph-based Methods: Methods based on graph structures
utilize graph topological properties to achieve FSCIL. These
methods typically use nodes and edges in the graph to describe
the similarity or correlation between different classes from vari-
ous sessions and adjust the graph structure based on the mutual
influences among classes. Some studies employ graph structures
to implement FSCIL [13, 14]. For example, Tao et al. [13] proposed
the TOPIC framework, which utilizes the neural gas network
for knowledge extraction and representation. TOPIC aimed to
address FSCIL by dynamically adjusting the interrelationships
between feature representations. Specifically, the neural gas net-
work defined an undirected graph that mapped the feature space
to a finite set of feature vectors and maintained the topological
properties of the feature space through competitive Hebbian
learning [70]. To achieve FSCIL, they gradually improved the
neural gas network by enabling the supervised neural gas model
to grow nodes and edges through competitive learning. Addi-
tionally, they designed a stability loss to suppress catastrophic
forgetting and an adaptability loss to reduce overfitting. In
addition, the CEC framework [14] mentioned in Sec. 4.1.2 also
utilized graph structures for FSCIL. It first trained a graph at-
tention network using pseudo-incremental sessions to adjust the
model. During incremental sessions, the model incorporated an
attention mechanism to regulate the interrelationships between
nodes, represented by prototypes of old and new classes. This
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allowed for better context information transfer between sessions,
making the class prototypes more robust.

Other Methods: In addition to graph-based methods, some
studies employ other dynamic structures to achieve FSCIL [35,
71, 72]. For example, Yang et al. proposed a series of works [35,
71]. As shown in Fig. 8(e), they proposed a novel Dynamic
Support Network (DSN) [35] to address the challenges of FSCIL.
DSN was a self-adaptive updating network with compressed
node expansion, aiming to ”support” the feature space. In
each session, DSN temporarily expanded the network nodes
to enhance the feature representation capability for incremental
classes. Then, it dynamically compressed the expanded net-
work through node self-activation, pursuing compact feature
representation to alleviate overfitting. Moreover, DSN selectively
invoked the distribution of old classes during the IL process
to support feature distribution and avoid confusion between
classes. Furthermore, in the framework proposed by Ahmad
et al. [72], the output nodes of the model increased with the
number of classes involved in the current session. The model
parameters related to old classes were kept fixed. The newly
added nodes’ weights were randomly initialized, and they were
trained using the training data from the current session to update
the parameters.

Discussion: Dynamic structure methods are important ap-
proaches to address the challenges of FSCIL. These methods
achieve the learning of new knowledge while preserving old
knowledge by dynamically adjusting the model structure or
the relationships between prototypes. For example, graph-based
methods utilized the topological characteristics of graphs to
achieve non-forgettable IL by adjusting nodes and edges to
describe the similarity and correlation between different classes.
Dynamic structure networks enhances feature representation
and alleviates overfitting by temporarily expanding and dynam-
ically compressing network nodes. Dynamic structural methods
play a significant role in FSCIL, but further research and ex-
ploration are still needed to develop more design methods for
dynamic structures.

4.2.2 Attention-based Methods

Attention-based methods in FSCIL adjust the attention allocation
of features by introducing attention modules into the model
structure. This allows the model to focus on information relevant
to the current task, improving its performance and generaliza-
tion ability. The role of attention modules used in many FSCIL
approaches [14, 16, 27, 73, 74] is diverse. For example, in the
dual-branch KD framework proposed by Zhao et al. [73], which
consisted of a base branch and a novel branch, they noted
that fine-tuning by novel classes inevitably led to forgetting
old knowledge. To further improve the performance of base
classes, they proposed an attention-based aggregation module
that selectively merges predictions from the base branch and
the novel branch. Furthermore, Cheraghian et al. [27] employed
meta-learning to train a backbone that can incrementally learn
new classes with limited samples without forgetting the old
classes. However, many existing FSCIL paradigms update the
classifier by concatenating the base classifier with the new class
prototypes obtained by averaging the features of each training
sample. This approach often leads to bias. Therefore, this paper
proposes a correction model based on Transformer [75]. With
its attention mechanism, the correction model can effectively
transmit context information among different classes, making the
classifier more efficient and robust. Similar approaches include
the graph attention network used in the CEC framework [14].

4.3 Optimization-based Approaches

Optimization-based approaches tackle the challenges in FSCIL
by addressing the complexity of optimization problems. The
relevant strategies primarily involve representation learning,
meta-learning, and KD, according to the existing works.

4.3.1 Representation Learning-based Methods
In FSCIL, representation learning aims to extract meaningful
features from a limited stream of samples to form a ”representa-
tion” of the data [76]. Through effective representation learning,
models can identify and utilize underlying patterns within these
few samples and generalize them to new, unseen classes. Even in
few-shot incremental scenarios, models can perform excellently
with efficient representation learning. In FSCIL, there are diverse
approaches to performing representation learning, which can
be categorized into metric learning-based, feature space-based,
feature fusion-based, and other methods, based on the core
principles of the respective methods.

Metric Learning-based Methods: Metric learning aims to de-
termine the similarity between objects using an optimal distance
metric for learning tasks [77]. It has found extensive application
in FSL [78]. Recently, metric learning has also been adopted in
FSCIL to learn effective representations. Among the commonly
used approaches, triplet loss stands out. As shown in Fig. 9(a),
Mazumder et al. [31] proposed a novel approach for FSCIL. It
incorporated self-supervised learning to enhance the generaliza-
tion capability of the backbone. Then, this approach analyzed the
importance of model parameters and updated only the unim-
portant parameters for new classes. The update was achieved by
combining three loss functions: triplet loss, regularization loss,
and cosine similarity loss. The triplet loss aimed to generate
discriminative features, while the regularization loss prevented
catastrophic forgetting. The cosine similarity loss focuses on
controlling the similarity between old and new prototypes. Thus,
effective performance is achieved for FSCIL. Moreover, other
metric learning methods are applied to FSCIL too. Concretely,
Peng et al. [47] proposed the ALICE framework, incorporating
the angular penalty loss originally used in face recognition to
obtain well-clustered features. This loss was employed to train
the backbone using both base class data and synthetic data,
thereby creating additional space for accommodating incremen-
tal classes, and cosine similarity was applied to achieve the
classification.

Despite the good performance achieved by these margin-
based metric losses, Zou et al. [36] pointed out the issue in FSCIL:
large margin values can result in good discriminability among
base classes but hinder the generalization capability of new
classes. Conversely, small or even negative margin values can
lead to poor performance on the base classes but exhibit better
generalization on new classes. This phenomenon is known as
the class-level overfitting problem. To address this issue, Zou et
al. [36] proposed the CLOM framework, which combined margin
theory with the characteristics of neural network structures.
Specifically, since the shallow layers of neural networks are more
suitable for learning common features among classes, while the
deep layers are better suited to acquiring advanced features, they
designed a loss function that constrains shallow feature learning
and deep feature learning separately. Furthermore, this frame-
work alleviates the class-level overfitting problem by integrating
class relationships.

Feature Space-based Methods: Feature space-based methods
are a class of approaches that aim to perform FSCIL by opti-
mizing the feature space. The core idea of these methods is to
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Fig. 9. The representative classification frameworks in FSCIL: (a) FSLL+SS,
using self-supervised learning and metric learning to learn the backbone and
evaluate unimportant parameters for new class learning; (b) NC-FSCIL, ap-
plying neural collapse theory to pre-define a classifier for backbone learning;
(c) FeSSSS, merging features from self-supervised and supervised learning;
and (d) Us-KD, leveraging unlabeled data with uncertainty quantification to
perform KD.

design the feature space for learning more robust and efficient
feature representations. Some related methods address FSCIL
by designing subspaces [32, 79, 80]. For example, inspired by
the frequency decoupling [81], Zhao et al. [32] discussed and
utilized the characteristics of different frequency components in
features. Specifically, the method first trained a feature extractor
using metric learning loss and regularization loss. Then, they
decoupled the features based on their frequency and observed
the roles of high-frequency and low-frequency information in

FSCIL. It was found that low-frequency information may con-
tribute more to preserving old knowledge. Therefore, they de-
signed subspaces with different learning rates to learn features
in different frequency domains, where the fast subspace learned
new knowledge and the slow subspace preserved old knowl-
edge. Through this subspace combination strategy, the method
achieved good performance.

Furthermore, some methods address FSCIL by designing
feature spaces of specialized structures. For example, Hersche
et al. [34] proposed a C-FSCIL framework, which consisted of
a feature extractor trained by meta-learning, a trainable fully
connected layer, and a rewritable explicit memory. The core idea
was introducing hyperdimensional embedding, which has three
advantages: the high probability of quasi-orthogonality between
random vectors, (2) rich expressive space, and (3) good semantic
representation capability. C-FSCIL had three training strategies.
The first was based on simple meta-learning, as described in
Sec. 4.3.3. The second strategy stored initial prototypes in the
globally average activation memory and applied an element-
wise sign operation to transform similar feature prototypes into
bipolar vectors. These transformed vectors were then supervised
to train the fully connected layer, which learned the weights
for the final prototypes. The third strategy was similar to the
second one but incorporated two losses to constrain the inter-
class differences and maintain the relationship with the origi-
nal prototypes. Besides, as shown in Fig. 9(b), Yang et al. [82]
proposed an FSCIL framework based on neural collapse [83],
which refers to the phenomenon that at the end of training (after
0 training error rate), the last layer features of the same class
collapse into a single vertex in the feature space, aligning all
class vertices with their classifier prototypes and forming as a
simplex quiangular tight frame. Based on this characteristic, the
proposed framework predefined a structure similar to neural
collapse and directed the model to optimize it. Specifically, a
group of prototypes for both the base and incremental sessions
was pre-assigned as a simplified form of quiangular tight frame.
During training, the prototypes were fixed. They introduced a
novel loss function and an additional projection layer to assign
each class to its respective prototype separately. Without cumber-
some operations, this method achieved superior performance. In
addition, in Sec. 4.1.2, the method proposed by Zhou et al. [33]
also addressed FSCIL by learning the feature space in a way that
preserves some space for incremental classes during the learning
of base classes.

Feature Fusion-based Methods: Feature fusion refers to
integrating or combining features obtained from different in-
formation sources or feature extraction methods to create a
more comprehensive and efficient representation that exhibits
robustness and generalization capabilities [84]. In the context of
FSCIL, various methods employ feature fusion strategies to learn
effective feature representations that can adapt to specific task
requirements. Notably, a significant focus is on incorporating
self-supervised features into the fusion process [31, 72, 85, 86].
For example, as shown in Fig. 9(c), Ahmad et al. [72] proposed a
framework that combines self-supervised and supervised fea-
tures. The core structure of this framework included the fol-
lowing components: Firstly, feature extractors obtained through
supervised training on base-class data and self-supervised tasks
on ImageNet [58] or OpenImages-v6 [87] using methods such
as pretext tasks, contrastive loss, or clustering. Secondly, the
Gaussian generator synthesized feature for replay in incremental
sessions. Lastly, a lightweight model for incremental feature
fusion and classification. Additionally, Kalla and Biswas [86]
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proposed S3C, a method for addressing FSCIL based on the
stochastic classifier [88] and self-supervision. They introduced
a novel self-supervised training approach [89], using image aug-
mentations to generate artificial labels, to train the classification
layer. The stochastic classifier weights helped mitigate the impact
of limited new samples and the unavailability of old samples.
The self-supervision component enabled the learning of features
from base classes that generalize well to future unseen classes,
effectively reducing catastrophic forgetting.

In addition to feature fusion based on self-supervised fea-
tures, there are also works that integrate other features to achieve
good performance in FSCIL. For example, Yao et al. [90] proposed
a simple strategy for enhancing the new prototype. Specifically, it
first trained a CNN network on the base classes and kept it fixed.
It was used to generate class prototypes for both base and new
classes. Then, the initial class prototypes for new classes were
measured for their similarity to base class prototypes. Based on
the similarity, the prototypes for new classes were updated by
mixing the initial weights with other base prototypes. This fusion
enhancement strategy imitated human cognition by guiding new
class learning based on existing knowledge.

Discussion: Feature fusion plays a crucial role in FSCIL
by integrating multiple information sources and feature extrac-
tion methods to provide a comprehensive, efficient, and robust
representation. In FSCIL, various feature fusion strategies are
employed to learn effective feature representations that adapt
to specific tasks. For instance, combining self-supervised and
supervised features enables the model to acquire representations
with good generalization ability. Additionally, another approach
fuses existing features to guide new class learning. These meth-
ods highlight the significance of feature fusion in addressing
FSCIL challenges, while further exploration of more efficient fea-
ture fusion strategies is needed to enhance model performance
and generalization ability.

4.3.2 Knowledge Distillation-based Methods

In continuous learning, KD is widely employed to transfer
knowledge from an old model, known as the “teacher model,”
to a new model, referred to as the “student model” [91]. It effec-
tively addresses catastrophic forgetting in continuous learning.
However, in FSCIL, the data distribution between the base and
incremental sessions is imbalanced, with sufficient samples in
the base session and limited samples in the incremental session.
Conventional KD methods for continuous learning are prone to
overfitting in the incremental session and further biases in future
incremental sessions [73]. Nevertheless, many studies have ex-
plored the application of KD to FSCIL, focusing on transferring
knowledge between sessions using KD. Based on the approach
to address the challenges of data imbalance and overfitting in
FSCIL, these studies can be classified into two categories: KD by
balancing data and optimized KD.

Knowledge Distillation-based Methods with Balanced
Data: To address the inadequacy of KD methods in FSCIL
due to data imbalance, some approaches [28, 44, 92] address
the issue by selecting an equal number of samples from the
base and incremental sessions for distillation, avoiding bias. For
instance, Dong et al. [92] proposed a relation KD framework.
They constructed a sample relation graph to represent learned
knowledge, ensuring balance by selecting an equal number of
samples from each base class. The samples were chosen based on
the angles between their feature vectors, removing redundancies
until the desired K samples remained. A sample relation loss
function was introduced to discover the relationship knowledge

among different classes, facilitating the distillation of sample
relationships and the propagation of structural information in
the graph. Additionally, as introduced in Sec. 4.1.1, Zhu et al. [44]
addressed overfitting and knowledge transfer in FSCIL by fine-
tuning the backbone and sampling base class samples.

Another solution to mitigate data imbalance and limited
samples in FSCIL is introducing additional data to prevent
overfitting. In the context of FSCIL, Cui et al. proposed a series
of semi-supervised methods that leverage KD and unlabeled
data [45, 46, 93]. As shown in Fig. 9(d), Cui et al. [45] introduced
the Us-KD framework, which used an uncertainty-guided mod-
ule to select unlabeled data to mitigate overfitting during knowl-
edge transfer. The framework initially trained the model on base
classes and stored some samples. In the incremental session, the
model was initialized with the previous model’s weights and
updated using stored old samples and labeled samples from the
current session through classification and distillation losses. Sub-
sequently, the uncertainty-guided module selected and labeled
unlabeled samples, combined with labeled samples to update the
model iteratively. Finally, the stored data was updated with these
samples. In their further research [46], they pointed out that well-
learned or easily classifiable classes often have higher prediction
probabilities. Thus, they designed a data selection method called
”Class Equilibrium,” where well-learned categories are assigned
fewer samples, and poorly learned categories are assigned more
samples. It is worth noting that they highlighted the potential
unreliability of KD with unlabeled data. Thus, they introduced
an uncertainty-aware distillation approach suitable for semi-
supervised FSCIL, consisting of uncertainty-guided refinement
and adaptive distillation loss. Refinement involved leveraging
uncertainty assessment to filter reliable samples from the aug-
mented dataset, while adaptive distillation adjusted the distilla-
tion loss weights based on the sample quantity.

Optimized Knowledge Distillation-based Methods: Some
methods have innovatively optimized KD methods to address
the issues caused by the characteristics of the FSCIL data stream.
For example, Cheraghian et al. [27] proposed a semantic-aware
KD framework. In the base session training, this framework first
mapped the labels to word embeddings using natural language
processing models. Then, the backbone was used to convert im-
ages into original features. Subsequently, a multi-head attention
model was trained using a super-class aggregation approach
to prevent overfitting during the incremental process. Finally,
a mapping model was trained to align the image features with
the word embeddings. For incremental sessions, the labels of
the new classes were first mapped to word embeddings. The
mapping model was trained using fine-tuning and KD to further
refine the image features. The classification was achieved by
assessing the similarity between the image features and word
embeddings. Additionally, Zhao et al. [73] proposed a class-aware
bilateral distillation framework, which consists of two branches:
the base branch and the novel branch. Two teacher models
guided the learning of the novel branch. One teacher model was
trained on base class data and possessed rich general knowledge
to alleviate the overfitting of new classes. The other teacher
model was updated from the previous incremental session and
contained adaptive knowledge of the previous new classes to
mitigate their forgetting. Fine-tuning leads to forgetting, and an
attention-based aggregation module was inevitably introduced
to further improve the performance of the base classes by se-
lectively merging the predictions from the base branch and the
novel branch.

Discussion: The applicability of KD in FSCIL depends on
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resolving challenges of imbalanced data distribution and overfit-
ting with few-shot samples and its exacerbated effects resulting
from incremental scenarios. The data-driven approach can ad-
dress these challenges, including incorporating unlabeled data,
establishing a balanced distribution, and employing sample re-
lation distillation. Furthermore, optimizing the KD framework
is another strategy. For instance, introducing semantic word em-
beddings as auxiliary information can be employed to optimize.
These approaches aim to alleviate the above challenges and
facilitate the effective application of KD in FSCIL.

4.3.3 Meta Learning-based Methods
FSCIL faces challenges of overfitting and catastrophic forgetting
due to limited samples for continuous learning. Meta-learning,
or ”learning to learn,” is a prominent approach to address these
issues. Meta-learning leverages experiences distilled from mul-
tiple learning episodes, encompassing a distribution of related
tasks, to enhance future learning performance [94]. In FSCIL,
meta-learning is crucial in improving the model’s adaptation
ability. Building on the description in Sec. 4.1.2, most meta-
learning methods in FSCIL are trained by pseudo-incremental
tasks sampled from the base session. It proves effective for
backbone training, special structure training, feature distribution
learning, and various other applications in FSCIL.

One common application of meta-learning is to directly train
backbone models by constructing a series of pseudo-incremental
scenarios, enabling them to adapt to real incremental scenarios.
For instance, in the C-FSCIL framework proposed by Hersche
et al. [34], empirical evidence demonstrated that training the
backbone using the meta-learning strategy effectively can extract
robust features. Utilizing the average of these features to create
class prototypes surpassed the state-of-the-art methods at that
time. Moreover, meta-learning was employed to learn feature
distributions in FSCIL. Zheng and Zhang [95] introduced meta-
learned class structures to regulate the distribution of learned
classes in the feature space. Class structures describe the dis-
tribution of learned classes in specific directions. They ensured
discriminative class prototypes without interference by propos-
ing a class structure regularizer consisting of direction vectors
associated with class structures and an alignment kernel aligning
sampled embeddings with the class structures. A novel loss
function was also introduced to prevent interference between
new and old prototypes. The model was trained on a series of
constructed meta-learning tasks. Additionally, meta-learning can
be utilized to train specially designed structures in FSCIL. In
the LIMIT framework proposed by Zhou et al. [16], a series of
pseudo-incremental tasks were sampled from the base session
for meta-learning-based training. To mitigate bias issues caused
by direct classification, a corrective model with a transformer
as its core was introduced. The corrective model, trained using
meta-learning and incorporating self-attention mechanisms, ad-
justed the biased relationship between old class classifiers and
new class prototypes, ensuring that feature embeddings encom-
pass contextual information. Similarly, the CEC framework men-
tioned in Sec. 4.1.2 combined pseudo-incremental sessions with
meta-learning to train a graph attention network for regulating
the relationships between prototypes.

4.3.4 Other Methods
In addition to the methods above, some studies focus on learning
efficient feature representations to adapt to FSCIL through other
approaches. For instance, unlike existing methods that attempt
to overcome catastrophic forgetting when learning new tasks, Shi

et al. [30] proposed a novel strategy to address this issue while
learning base classes. The core idea was to identify the flat local
minima of the loss function during base training and perform
fine-tuning in the flat region during incremental sessions. This
approach maximized the preservation of knowledge when con-
ducting fine-tuning on novel classes. Specifically, since directly
finding the flat local minima is challenging, they proposed
adding random noise to the model parameters to approximate
it during base training. In the incremental sessions, FSCIL was
achieved through fine-tuning within the flat local range. The
experiments showed effectiveness.

4.4 Summary

4.4.1 Performance Comparison

In this section, we summarize the performance of mainstream
FSCIC methods. Since not all relevant methods are open-source,
and there are certain differences in their implementation con-
ditions and configurations (such as different backbones, the
fusion with other features, and different learning paradigms),
it is impractical to compare all FSCIC methods in a unified
and fair manner. Therefore, we summarize the performance of
FSCIC methods on three commonly used benchmark datasets
in Tab. 3, including miniImageNet, CIFAR-100, and CUB-200. To
fully demonstrate the characteristics of each method, Tab. 3 pro-
vides their types and specific taxonomy categories. In addition,
we provide the backbone used by each method in this table. As
some methods introduce additional auxiliary factors, we have
specially set an ”extra” column in the table to summarize the
additional auxiliary factors introduced by each method. The per-
formance of FSCIC methods is primarily evaluated by measuring
the accuracy achieved on different incremental sessions, AA
across all sessions, and PD values. Given the space limitations,
we only provide accuracy for the starting and ending sessions,
AA, and PD. Moreover, we summarize the highlights of each
method in this table.

For FSCIC methods, the performance of the backbone
achieved on the base session is crucial for subsequent IL.
Through the analysis of the SA of the three datasets in Tab 3,
it can be found that the top five performance methods on
miniImagNet are: NC-FSCIL [82] with 84.02%, FeSSSS [72] and
CFSCIL [85] with 81.50%, ALICE [47] with 80.60%, and S3C [86]
with 76.89%. On CIFAR-100, the top five methods are: NC-
FSCIL [82] with 82.52%, WaRP [80] with 80.31%, CaBD [73]
with 79.45%, ALICE with 79.00%, and S3C with 78.66%. The
top five methods on the CUB-200 dataset are F2M [30] and
FSIL-GAN [68] with 81.07%, DSN [35] with 80.86%, S3C with
80.62%, and NC-FSCIL with 80.45%. It is noticeable that the NC-
FSCIL based on the neural collapse theory and the S3C that
integrates the self-supervised learning features have achieved
excellent performance on all three benchmark datasets. The
ALICE framework that utilizes metric learning and pseudo-
data synthesis has performed well on miniImagNet and CIFAR-
100. Furthermore, combining the performance of other methods
on the three datasets, it can be found that introducing self-
supervised learning features can help the FSCIC model achieve
good performance on the base session. The appropriate metric
learning method and neural collapse theory can also improve
the model’s performance on the base session. Apart from that,
it has been found that almost all methods that achieved top
five performance on the base session also achieved top five
performance in terms of the AA index. It reflects the influence of
the performance achieved on the base session.
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The performance obtained in the final session reflects the
learning capability of the FSCIC model for incremental classes
and the stability of keeping old knowledge. However, as the
model learned in each incremental session will be tested on
all seen classes, and the number of classes involved in the
base session is large, the performance obtained on each session
cannot fully represent the model’s IL ability. In contrast, the PD
value can better reflect the model’s ability to resist forgetting.
In Tab. 3, the top five methods with the lowest PD values on
miniImageNet are: MgSvF [32] with 17.33%, SFbFSCIL [79] with
19.14%, SPPR [69] with 19.53%, ERL++ [92] with 20.94%, and
DSN [35] with 21.06%. The top five methods on CIFAR-100
are: SSFSCIL [93] with 19.40%, F2M [30] with 20.04%, SFbFSCIL
with 20.31%, SPPR with 20.65%, and UaD-CE [46] with 21.05%.
The top five methods on CUB-200 are: UaD-CE with 14.45%,
CaBD [73] with 15.31%, ALICE [47] with 17.30%, DSN with
17.65%, and MgSvF with 17.96%. It can be seen that SPPR, which
constructs pseudo incremental sessions, and SFbFSCIL, which is
based on feature space fusion and VAE feature synthesis, both
have achieved good PD values on the first two datasets. UaD-CE,
based on KD and semi-supervised learning, also achieved good
PD values on the last two datasets. Based on dynamic network
structure, DSN and MgSvF, based on frequency domain analysis,
have shown good performance on the first and last datasets.
Furthermore, combining the performance of other methods on
the three datasets, it can be found that techniques such as KD,
pseudo-incremental scenario construction, dynamic structures,
and feature optimization can effectively alleviate the catastrophic
forgetting problem.

4.4.2 Main Issues and Facts
In FSCIC, the current issues primarily encompass a lack of
comprehensive evaluation metrics, unfairness in experimental
conditions, and inconsistencies with real-world scenarios. Most
studies use AA or PD values to measure model performance,
but they can not reflect the performance details during the
continuous learning process [47]. Furthermore, the variability
in choosing backbone networks and the introduction of addi-
tional data introduce inherent biases when comparing different
methodologies. Most importantly, the current setting of FSCIC
faces challenges in real-world implementation.

5 FEW-SHOT CLASS-INCREMENTAL OBJECT DETEC-
TION

Since the instance segmentation framework in FSCIL generally
has object detection capabilities, this section discusses them
together. Firstly, the difference with FSCIC is presented. Then,
existing methods are systematically summarized from the per-
spectives of anchor-free and anchor-based frameworks. Finally,
the paper summarizes the entire work, including performance
comparisons and discussions of key issues.

5.1 Difference with Classification
In contrast to the classification task in FSCIL, FSCIOD aims to
enable the model to continuously learn new classes from limited
samples while achieving accurate localization (using bounding
box regression or segmentation) and classification of each corre-
sponding individual object in an image [96, 97, 98]. The model
is also required to retain the capability of object localization and
classification for the old classes.

Similar to the classification setting in FSCIL provided in
Sec. 2.1, the training data for FSCIOD can be divided into

the base and new training sets. However, there is a differ-
ence. In the classification task, the new classes are typically
further divided into multiple incremental sessions in the form
of N−way K−shot, while in the current object detection setting,
the new classes usually are formed as one incremental session.
Specifically, the training sets for FSCIOD can be denoted as
{Db

train, D
n
train}, where the base training set Db

train contains a
large number of labeled training samples and can be represented
as Db

train = (xi, yi)
n0i = 1, where xi, yi, and n0 represent the

training sample, its corresponding ground truth set, and the
number of base samples, respectively. Similar to the classification
setting, the new training set Dn

train = {(xi, yi)}N×K
i=1 is in the

form of N−way K−shot. Note that the classes in the base and
new training sets do not intersect. The evaluation process for the
object detection task in FSCIL is similar to the classification task.
After learning the new training set, the model is evaluated on
the performance of all seen classes, i.e., the union of testing data
from all seen classes.

It is important to note that in incremental images, even if a
single image contains multiple objects of different classes, only
the ground truth set for the current class is provided to align
with the few-shot class-incremental setup.

5.2 Methods
FSCIOD requires simultaneously localizing and classifying new
class objects during IL while not forgetting the old knowledge.
This poses a greater challenge compared to classification in
FSCIL. Current methods include both anchor-based and anchor-
free frameworks. Generally, anchor-based detectors have supe-
rior detection performance, but they suffer from lower efficiency
and flexibility due to the design of anchors. On the other hand,
anchor-free detectors are more efficient and flexible.

5.2.1 Anchor-free Frameworks
Recently, some studies [62, 97, 98, 99, 100] have adopted anchor-
free frameworks to perform this task. The reason is that anchor-
free frameworks can effectively handle incremental classes with-
out defining anchor boxes. According to their detection frame-
work, these studies can be classified into three categories:
CentreNet-based, FCOS-based, and DETR-based methods.

CentreNet-based Methods: CentreNet [101] redefined object
detection as a point+attribute regression problem. During detec-
tion, it divided the input image into different regions, each with a
centre point. CentreNet made predictions to determine whether
the centre point corresponds to an object. Then, it predicted the
class and confidence for this object. CentreNet also adjusted the
centre point to obtain the accurate location and regressed the ob-
ject’s width and height. By maintaining independent prediction
heatmaps for each class and using activation thresholding for
independent object detection, CentreNet supported incremental
registration of new classes. Based on CentreNet, Perez-Rua et
al. [62] proposed the ONCE framework, which incorporated
meta-learning for object detection in FSCIL. It decomposed Cen-
treNet into a fixed universal feature extractor trained on base
classes and a meta-learned object localizer with class-specific
parameters. In the few-shot incremental detection scenario, the
model only required forward propagation for registration with-
out model updating or accessing base data. Additionally, Cheng
et al. [99] also utilized CentreNet as the backbone and introduced
meta-learning based on MAML [67]. First, meta-learning pro-
vided good initialization for the object localizer based on base
data, enabling easy fine-tuning with few-shot samples from new
classes. Furthermore, the filter parameters of base classes were
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retained. The meta-learner determined the remaining parameters
of the object localizer. The study also concluded that the main
factor limiting the performance of new classes is the overfitting
of the feature extractor to base classes, resulting in insufficient
generalization.

FCOS-based Methods: Similarly, recent works have adopted
it as a backbone due to the strong performance and class-agnostic
localization capability of FCOS [102]. For instance, Sylph pro-
posed by Yin et al. [97] decomposed the detection framework into
a class-agnostic detector and a novel classifier to enable continual
learning of new classes. Specifically, FCOS was employed in
Sylph for class-agnostic object localization. Since optimizing
softmax can lead to catastrophic forgetting [97, 103], Sylph
replaced it with multiple binary sigmoid-based classifiers, each
independently handling its own set of parameters. When adding
new classes, a new set of classifier parameters can be generated
with zero interference between predictions of different classes. In
addition, Feng et al. [100] proposed two modules inspired by the
phenomenon of establishing new connections between memory
cells in the brain when new memories appear. The first was
called the MCH module, which added a classification branch
to predict new classes each time they appeared. The second
was called the BPMCH module, which added a new backbone
that was initialized with the weights of the base class backbone
to transfer more knowledge from the base classes to the new
classes. In this work, FCOS and ATSS [104] were employed as
the baseline detectors. Training started on the base classes and
was then fine-tuned on the new classes, ensuring the retention
of knowledge learned from the base classes and transferring that
knowledge to the new classes.

DETR-based Method: In anchor-free frameworks, in addi-
tion to the methods based on CentreNet and FCOS, another work
adopts the DETR framework [105] as the backbone. Specifically,
Dong et al. [98] proposed the incremental-DETR, which firstly in-
troduced DETR to FSCIOD. This method consisted of two stages:
First, the entire network was pre-trained using a large amount
of data from the base classes, and the class-specific compo-
nents of DETR (including the projection layer and classification
head for specific classes) were fine-tuned using self-supervision
from additional object proposals generated by selective search
algorithm [106] as pseudo labels. Then, the CNN backbone,
transformer, and regression head were fixed, and an incremental
few-shot fine-tuning strategy was introduced to fine-tune and
distill knowledge from the class-specific components of DETR.
This strategy encouraged the framework to detect new classes
without catastrophic forgetting.

5.2.2 Anchor-based Frameworks

In addition to anchor-free frameworks, there have been some
studies [96, 107] that adopt the anchor-based framework, Mask
R-CNN [108], to address object detection and instance segmen-
tation in FSCIL. Mask R-CNN is a popular framework for the in-
stance segmentation, which extended the Faster R-CNN [109] ar-
chitecture by incorporating a mask prediction branch. It is a two-
stage approach that combines object detection and pixel-level
segmentation into one framework. Currently, there is limited
research on instance segmentation in FSCIL, and all utilize Mask
R-CNN as the backbone. For example, Ganea et al. [96] proposed
the iMTFA framework while initially introducing the setting of
few-shot incremental instance segmentation. Specifically, they
added an instance segmentation branch (similar to Mask R-CNN
to Faster R-CNN) to the few-shot object detection framework
TFA [110], resulting in MTAF. One drawback of MTAF was that

it required continual fine-tuning when adding new classes. Thus,
they extended MTFA to an incremental method called iMTFA.
In this framework, the regression and mask prediction heads
were class-agnostic. Additionally, the framework learned a fea-
ture extractor that generates discriminative features. The feature
extractor was used for new classes to compute the averaged
prototype vectors for each class, which were then concatenated
with the existing classifier. This enabled few-shot incremental
instance segmentation without the need for further training.
Furthermore, Nguyen and Todorovic [107] extended the Mask R-
CNN framework in the second stage: a new object class classifier
based on the probit function [111] and a new uncertainty-guided
bounding box predictor. The former utilized Bayesian learning
to address the scarcity of training examples for new classes.
The latter not only predicted object bounding boxes but also
estimated the uncertainty of the predictions, which guided the
refinement of bounding boxes. Two new loss functions were also
specified based on the estimated object-class distribution and
bounding-box uncertainty.

5.3 Summary
5.3.1 Performance Comparison
In this section, we summarize the performance of FSCIOD
methods. We summarize the performance of relevant methods
on COCO and VOC in Tab. 4. To fully elucidate the attributes of
each method, Tab. 4 includes their types and specific taxonomy
categories. In addition, the backbone employed by each method
is furnished in this table. Because some methods can achieve
object detection and instance segmentation simultaneously, we
have added a ”task” column in Tab. 4 to denote performance
on related tasks. There are two evaluation strategies for FSCIOD
methods: normal evaluation on COCO and cross-dataset eval-
uation on COCO and VOC. Given that relevant works adopt
two combinations of evaluation metrics: AP and AR, and AP
and AP50, we provide AP, AP50, and AR values in Tab. 4.
Furthermore, we distill the highlights of each method in Tab 4.

Given that the FSCIOD evaluation is usually conducted un-
der different sample shots, we analyze and summarize based on
the overall performance of relevant methods. It can be found
from Tab. 4, the top three performance methods for object detec-
tion achieved on base classes are Sylph [97], iFS-RCNN [107], and
MCH [100]. The top three performance methods for novel COCO
classes are iFS-RCNN, Incremental-DETR [98], and iMTFA [96].
The top three methods for overall performance on COCO are iFS-
RCNN, Sylph, and MCH. Among all methods for cross-dataset
evaluation on VOC, the top three performers are: Incremental-
DETR, BPMCH [100], and MCH. Therefore, it can be seen that
iFS-RCNN based on complex Mask RCNN yields the best re-
sults, and Sylph and MCH, which are based on simple FCOS,
also show good performance. In instance segmentation, only
anchor-based methods have conducted the relevant evaluation,
among which iMTFA has the overall best incremental segmenta-
tion ability on novel classes, but iFS-RCNN performs best on
base classes. In summary, anchor-based methods are suitable
for object detection and instance segmentation scenarios, with
excellent performance but more complex structures; anchor-free
methods are suitable for application scenarios requiring lower
framework complexity and can achieve performance slightly
inferior to anchor-based methods.

5.3.2 Main Issues and Facts
The current FSCIOD mainly faces the issue of insufficient re-
search. In addition, the performance of current research is rela-
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TABLE 4
The performance of FSCIOD methods. The taxonomy is abbreviated to taxo. (In %)

Type Taxo. Method Venue Backbone
(ResNet) Task Shot

COCO VOC
HighlightsBase Novel Overall Novel

AP AP50 AR AP AP50 AR AP AP50 AR AP AP50 AR

A
nc

ho
r-

fr
ee

C
en

tr
eN

et
-b

as
ed ONCE [62] CVPR 50 D

1 17.90 - 19.50 0.70 - 6.30 13.60 - 16.20 - - -
Proposed FSCIOD setting and intro-
duced the first work, ONCE5 17.90 - 19.50 1.00 - 7.40 13.70 - 16.40 2.40 - 12.20

10 17.90 - 19.50 1.20 - 7.60 13.70 - 16.50 2.60 - 11.60

SS [99]

TCSVT 50 D

1 26.90 - 25.80 0.90 - 4.20 20.40 - 20.40 1.50 2.30 6.10
Proposed new models, redesign-
ing the CenterNet and incorporat-
ing a novel meta-learning method,
MAML, to perform FSCIOD task

5 29.20 - 27.30 1.40 - 7.10 22.30 - 22.20 3.10 5.50 12.00
10 27.40 - 25.90 1.50 - 7.90 20.90 - 21.40 3.80 6.50 13.50

MS [99]
1 30.70 - 27.60 1.50 - 5.50 23.40 - 22.00 2.50 4.50 8.50
5 33.30 - 29.10 2.50 - 9.10 25.60 - 24.10 5.00 9.70 14.60
10 31.40 - 27.80 2.60 - 9.60 24.20 - 23.30 6.20 11.40 15.80

FC
O

S-
ba

se
d

Sylph [97] CVPR 50 D
1 37.60 - - 1.10 - - 28.48 - - - - - Introduced FCOS-based Sylph, de-

coupling object detection into classi-
fication and localization

5 42.40 - - 1.50 - - 32.18 - - - - -
10 42.80 - - 1.70 - - 32.53 - - - - -

MCH [100]

PRL 50 D

1 36.90 - - 0.40 - - 27.70 - - 1.00 - -
Introduced MCH and BPMCH, hu-
man memory-inspired models, out-
performing ONCE by effectively
transferring knowledge from base to
novel classes

5 36.00 - - 5.50 - - 28.30 - - 14.30 - -
10 35.50 - - 7.80 - - 28.60 - - 18.30 - -

BPMCH [100]
1 29.40 - - 2.40 - - 22.60 - - 6.10 - -
5 36.00 - - 6.40 - - 28.60 - - 16.40 - -
10 35.60 - - 7.00 - - 28.50 - - 17.60 - -

D
ET

R
-b

as
ed Incremental

-DETR [98] AAAI 50 D
1 29.40 47.10 - 1.90 2.70 - 22.50 36.00 - 4.10 6.60 - Developed Incremental-DETR for

FSCID, which uses self-supervised
learning and a fine-tuning strategy

5 30.50 48.40 - 8.30 13.30 - 24.90 39.60 - 16.60 26.30 -
10 27.30 44.00 - 14.40 22.40 - 24.10 38.60 - 24.60 38.40 -

A
nc

ho
r-

ba
se

d

M
as

k
R

C
N

N
-b

as
ed iMTFA [96] CVPR 50

D
1 27.81 40.11 - 3.23 5.89 - 21.67 31.55 - - - -

Proposed instance segmentation set-
ting in FSCIL and introduced the
first work, iMTFA, which can per-
form both instance segmentation
and object detection

5 24.13 33.69 - 6.07 11.15 - 19.62 28.06 - - - -
10 23.36 32.41 - 6.97 12.72 - 19.26 27.49 - - - -

S
1 25.90 39.28 - 2.81 4.72 - 20.13 30.64 - - - -
5 22.56 33.25 - 5.19 8.65 - 18.22 27.10 - - - -
10 21.87 32.01 - 5.88 9.81 - 17.87 26.46 - - - -

iFS-RCNN [107] CVPR 50

D
1 40.08 - - 4.54 - - 31.19 - - - - - Introduced iFS-RCNN, an exten-

sion of Mask-RCNN, leveraging pro-
bit function and uncertainty-guided
bounding box prediction for in-
stance segmentation and object de-
tection in FSCIL

5 40.06 - - 9.91 - - 32.52 - - - - -
10 40.05 - - 12.55 - - 33.02 - - - - -

S
1 36.35 - - 3.95 - - 28.45 - - - - -
5 36.33 - - 8.80 - - 28.89 - - - - -
10 36.32 - - 1.06 - - 30.41 - - - - -

tively poor compared to supervised learning methods, especially
in detecting novel classes, which is far from the level of practical
application. Furthermore, similar to FSCIC, FSCIOD also faces
the problem of a need for more suitable evaluation metrics. The
evaluation metrics used by different works vary slightly and are
not yet unified.

6 CONCLUSION AND OUTLOOKS

In this paper, we present a comprehensive and systemic survey
of FSCIL, covering its background and significance, problem
definition, core challenges, general schemes, relations with re-
lated problems, datasets, evaluation protocols, and metrics. We
focused on the classification and object detection tasks in FSCIL,
summarized the relevant works, analyzed their performance,
and summarized the main issues and facts faced by FSCIL.
Considering that FSCIL is still in its infancy, we attempt to offer
valuable insights and discuss potential directions.

6.1 Human-machine Gap in FSCIL
The memory learning in the human brain can be categorized into
three main processes: encoding, storage, and retrieval [112]. In
the encoding phase, the brain efficiently processes information
through associative learning and abstract thinking, effectively
encoding features of new categories even with limited samples.
During the storage phase, the hippocampus converts short-
term memories into long-term memories, forming stable neural
networks across different regions of the cerebral cortex. In the
retrieval phase, existing memories may be consolidated, up-
dated, or actively forgotten in conjunction with new information,
leading to the formation of memories adapted to the current
environment. This sequence of processes highlights the brain’s
efficient knowledge handling capabilities.

Currently, some IL research, such as the method proposed
by ZKudithipudi et al. [113] that emulates the Drosophila’s mush-
room body’s mechanisms, attempts to enhance model memory
capabilities by bio-inspired intelligence. However, a systematic
bio-inspired approach in FSCIL is yet to be established. Current
FSCIL models lack in associative learning and abstract thinking
in limited sample learning, and there’s room for improvement
in prior knowledge acquisition. These models typically use one
model for storing all knowledge from continual learning, sug-
gesting the need for exploring multi-modular knowledge storage
and long-short term memory mechanisms. Additionally, FSCIL
requires proactive strategies for knowledge consolidation, up-
dating, and personalized management, such as actively forget-
ting infrequent knowledge, reinforcing challenging knowledge,
and integrating consistent knowledge.

6.2 Practical Settings in FSCIL
The current FSCIL setting, based on Tao et al. [13], is idealistic.
The real world requires practical settings. Some research has
improved the FSCIL setting to better adapt to the real-world,
for example: (a) FSCIL with limited base samples: Ensuring that
the base session has abundant samples is challenging in some
situations. Thus, Kalla and Biswas [86] suggested the FSCIL-lb
setting with fewer required base training samples; (b) FSCIL
with imbalanced sessions: Considering the practical difficulty in
ensuring the N−way K−shot format, Kalla and Biswas [86]
proposed the FSCIL-im setting, where the incremental sessions
appear with an imbalanced data distribution; (c) Semi-supervised
FSCIL: Some scenarios have some available unlabeled data. Cui
et al. [93] leveraged them to propose semi-supervised FSCIL.

Despite some efforts to propose settings that better match
real-world situations, some directions are still worth exploring:
(a) Cross-domain FSCIL: Considering the domain changes in the
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real world (e.g., changes in imaging condition and environment),
FSCIL should be robust under cross-domain conditions; (b) FS-
CIL with repetition: The no repetition constraint of current FSCIL
doesn’t reflect practical scenarios where class recurrence is com-
mon. Researching how to utilize these repetitions (considering
that current samples may be scarce, but could increase in the
future) can improve the practicality; (c) Incomplete FSCIL: In real-
world scenarios, where most classes have ample training sam-
ples but some are scarce, the assumption of uniformly few-shot
data is unrealistic. Hence, investigating incomplete FSCIL, en-
compassing incremental sessions with classes of varying sample
availability, is also meaningful; (d) Federated FSCIL: Combining
the privacy and distributed features of federated learning with
FSCIL’s ability to learn from limited data, this method aims to
create models that are privacy-aware and adaptable to multiple
clients with limited and dynamic data.

6.3 Knowledge Acquisition and Update in FSCIL
FSCIL involves a continuous learning process with base and
incremental sessions, so knowledge acquisition and update are
analyzed in two parts:

Base Stage: Effective initialization of the backbone is crucial
for ensuring base class performance and generalization for fu-
ture incremental classes. Current methods often rely on a large
number of base class samples for backbone network initializa-
tion, which may not align with reality and whose generalization
capabilities are difficult to accurately assess. To enhance gener-
alization, researchers have tried introducing strategies like self-
supervised learning and forward compatibility, but these usually
depend on sufficient base class data. There is a lack of research on
initial knowledge acquisition without specific requirements for
the base data. Therefore, exploring methods to enrich initial stage
knowledge acquisition is important. From the data perspective,
increasing data diversity and improving knowledge learning
strategies, such as exploring data augmentation, data genera-
tion, introducing unsupervised data, and optimizing backbone
learning methods, are essential. Additionally, introducing pre-
trained models and other prior knowledge can be considered.
For instance, foundation models like CLIP, SAM, and GPT, which
combine self-supervised or semi-supervised pre-training with
prompt engineering, have shown excellent generalization and
transfer capabilities, offering new possibilities for enhancing
FSCIL model performance.

Incremental Stage: In incremental sessions, models typically
initialize with weights from prior phases, focusing on learning
new classes and preserving existing knowledge. Challenges arise
from limited new samples and restricted access to complete
old data, making effective learning of new categories and old
knowledge retention pivotal. Current solutions include freezing
the backbone network and using class prototype averaging,
demanding robust generalization and discrimination from the
network, yet possibly leading to reduced performance as new
classes increase. An alternative is maintaining key parameters
for new class learning, though this risks diminishing old class
performance and complicates parameter evaluation due to deep
learning models’ opaque nature. KD is also commonly used, but
how to effectively learn new category and select efficient old
samples for distillation is still a direction to be further explored.

6.4 Applications and Safety in FSCIL
This section primarily discusses the potential application sce-
narios of FSCIL and the privacy concerns associated with its
applications.

Application Scenarios: Current FSCIL research mainly tar-
gets image classification, with emerging yet non-systematic stud-
ies in visual object detection, natural language processing, lip
reading, remote sensing, and robotics. Most work evaluates
performance on benchmark datasets, with real-world applica-
tions still evolving. In many application scenarios, the demand
for few-shot continuous learning capability is significant. For
instance, in applications like video analysis, service robotics in
hotels, and autonomous driving, the need for FSCIL technology
is evident. These fields often require learning new classes from
limited data, maintaining high accuracy with scarce samples,
and adapting to new categories in dynamic environments, un-
derscoring FSCIL’s importance and potential.

Privacy and Safety: Privacy and Security: Privacy protection
is a key issue in the application of FSCIL. To address catastrophic
forgetting, some FSCIL studies store old category samples for
replay, which could lead to privacy breaches when dealing with
tasks involving private data. Currently, research on privacy pro-
tection in FSCIL is relatively limited, especially in the context of
the increasing prevalence of deep learning technologies. Despite
improvements in FSCIL’s accuracy, AI systems based on deep
learning are susceptible to security threats like adversarial and
data poisoning attacks. Therefore, in-depth research into the
security and privacy protection aspects of FSCIL is essential for
its widespread application across various scenarios.
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